Investigating Image Inpainting via the Alternating DirectionMethod of Multipliers
نویسنده
چکیده
In many imaging applications, there exists potential for corruption of the images by sources of structured noise that completely loses original pixel information. The reconstruction of the original image from its corrupted observation is known as image inpainting. This paper seeks to investigate image inpainting using a particular algorithm, the alternating direction method of multipliers (ADMM), and analyzes ADMM’s performance in image inpainting. Due to the ill-posedness of image inpainting, four priors were investigated in the ADMM implementation: total variation, non-localmeans, BM3D, and the recursive Gaussian filter. For each prior investigated, this paper uses an open-source ADMM solver and compares two performance metrics, the PSNR and SSIM, for a variety of images and corruption models.
منابع مشابه
فشردهسازی تصویر با کمک حذف و کدگذاری هوشمندانه اطلاعات تصویر و بازسازی آن با استفاده از الگوریتم های ترمیم تصویر
Compression can be done by lossy or lossless methods. The lossy methods have been used more widely than the lossless compression. Although, many methods for image compression have been proposed yet, the methods using intelligent skipping proper to the visual models has not been considered in the literature. Image inpainting refers to the application of sophisticated algorithms to replace lost o...
متن کاملBridge the Gap Between Group Sparse Coding and Rank Minimization via Adaptive Dictionary Learning
Both sparse coding and rank minimization have led to great successes in various image processing tasks. Though the underlying principles of these two approaches are similar, no theory is available to demonstrate the correspondence. In this paper, starting by designing an adaptive dictionary for each group of image patches, we analyze the sparsity of image patches in each group using the rank mi...
متن کاملTensor Based Second Order Variational Model for Image Reconstruction
Second order total variation (SOTV) models have advantages for image reconstruction over their first order counterparts including their ability to remove the staircase artefact in the reconstructed image, but they tend to blur the reconstructed image. To overcome this drawback, we introduce a new Tensor Weighted Second Order (TWSO) model for image reconstruction. Specifically, we develop a nove...
متن کاملSolving Constrained Total-variation Image Restoration and Reconstruction Problems via Alternating Direction Methods
In this paper, we study alternating direction methods for solving constrained total-variation image restoration and reconstruction problems. Alternating direction methods can be implementable variants of the classical augmented Lagrangian method for optimization problems with separable structures and linear constraints. The proposed framework allows us to solve problems of image restoration, im...
متن کاملModified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
متن کامل